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Introduction:  The ChemCam  instrument selected for 

the Curiosity rover is capable of remote laser-induced 

breakdown spectroscopy (LIBS).[1] We used a remote 

LIBS instrument similar to ChemCam to analyze 197 

geologic slab samples and 32 pressed-powder geo-

standards. The slab samples are well-characterized and 

have been used to validate the calibration of previous 

instruments on Mars missions, including CRISM [2], 

OMEGA [3], the MER Pancam [4], Mini-TES [5], and 

Mössbauer [6] instruments and the Phoenix SSI [7].  

     The resulting dataset was used to compare multivar-

iate methods for quantitative LIBS and to determine 

the effect of grain size on calculations. Three multivar-

iate methods - partial least squares (PLS), multilayer 

perceptron artificial neural networks (MLP ANNs) and 

cascade correlation (CC) ANNs - were used to generate 

models and extract the quantitative composition of 

unknown samples. PLS can be used to predict one ele-

ment (PLS1) or multiple elements (PLS2) at a time, as 

can the neural network methods.  Although MLP and 

CC ANNs were successful in some cases, PLS general-

ly produced the most accurate and precise results. 

     Experimental: A 1064 nm Nd:YAG laser, pulsed 

at 10 Hz and 17+/-1 mJ per pulse was used to analyze 

the samples at a distance of 6.92 m in a vacuum cham-

ber filled with 7 Torr CO2 to simulate martain surface 

pressure.  The LIBS emission was collected with an 89 

mm telescope directed to three Ocean Optics spec-

trometers covering most of the 240 – 800 nm range.  A 

demultiplexer similar to the one on ChemCam was 

used to simultaneously monitor all three spectral rang-

es.  Each spectrum represented 50 laser shots and at 

least 5 separate spots were analyzed per sample.  

      Multivariate Methods: The oxide weight percents 

were converted to atomic fractions prior to all calcula-

tions, since the intensity of emission lines in the LIBS 

plasma is sensitive to atomic fraction [8]. Observations 

were converted back to oxide weight percent for ease 

of interpretation by assigning an appropriate amount of 

oxygen to each cation and normalizing the total com-

position to 100 percent, assuming that all Fe is in the 

form Fe2O3 and that the samples contain no P2O5, CO2, 

SO3, or H2O.  The low-volatile silicate samples were 

sorted by SiO2 content and alternately assigned to a 

training set and a test set for use with the three calibra-

tion methods. A subset of samples was removed from 

the test set and used as a validation set. 

     Neural networks have been shown to perform better 

than PLS on doped soils with significant non-linearities 

in the signal. [9] A genetic algorithm (GA) was em-

ployed to optimize the number of hidden nodes in the 

MLP network for each prediction. CC ANNs, an alter-

native type of neural network that determine their own 

structure as they are trained [10], were also tested, us-

ing the FannTool graphical interface to the open-source 

Fast Artificial Neural Network (FANN) library [11]. 

    In addition to testing the methods using the full 

LIBS spectrum, an open-source GA [12] was used to 

perform feature selection on the input spectra. Feature 

selection identifies variables that are “most informa-

tive” for the calibration, which simplifies the model, 

reduces computation time, and can improve the predic-

tive ability. [13] In most cases, the five GA-selected 

wavelengths corresponded to strong emission lines for 

the element of interest. The three multivariate methods 

were also compared after averaging all spectra in the 

training set for samples with identical composition. 

This spectral averaging was applied alone and in con-

junction with feature selection. 

     Results: We demonstrated that PLS2 is successful 

with natural rock slab samples (Figure 1), with an aver-

age relative SiO2 error of ~4.7% for igneous rock sam-

ples when trained with the full training set and ~4.5% 

when trained only on igneous rocks in the training set. 

The calculated composition of unusual samples such as 

banded iron formation and silcrete were less accurate 

than silicate rocks with an average relative SiO2 error 

of ~21% when trained only on igneous rocks. Including 

additional samples in the training set reduced the 

RMSE for unusual samples to ~11%. 

  We calculated the root-mean-squared error (RMSE) 

of each method (PLS, MLP and CC) for each of the 

major elements and each combination of averaging and 

preprocessing (Figure 2). We also calculated an overall 

RMSE for each method by taking the square root of the 

sum of the MSEs for each major oxide. We used a Stu-

dent’s-t test to assess the statistical significance of the 

differences between methods [14]. PLS1 with feature 

selection and averaging had the lowest RMSE for sev-

en of the ten major elements considered, and PLS2 

using the full spectrum had the lowest overall RMSE. 

However, all of the PLS results, as well as MLP using 

the full spectrum and CC using feature selection and 

spectral averaging were statistically equivalent at the 



 
Figure 1: Calculated vs actual SiO2 weight % for PLS2 

trained on (a) igneous rocks and (b) using the full training 

set. Vertical black lines mark the typical range of 

compositions observed by APXS on both MERs. 

 

95% confidence level. Feature selection was most ef-

fective when applied with averaging for both PLS and 

CC methods, but MLP performed poorly when trained 

on the averaged spectra. Averaging and/or feature se-

lection were particularly effective for TiO2. 

     Grain Size Effects: We also investigated the effect 

of grain size and number of LIBS spots on prediction 

accuracy by using PLS2 trained only on powdered geo-

standards to calculate the composition of slabs of bas-

alt, dolerite and gabbro, which all have similar compo-

sitions but varying grain size. We found that basalts 

had a higher accuracy on average than gabbros. Alt-

hough each sample was only analyzed in five spots, in 

several cases multiple samples were cut from the same 

original rock, effectively increasing the number of 

spots for rocks of those compositions. We used these 

samples and calculated the predicted composition for 

all possible combinations of 1 to 20 spots. We found 

that the range of average predicted compositions for a 

rock converges as the number of LIBS spots is in-

creased, and that the maximum and minimum possible 

predictions typically require ~15 spots to converge to 

within one standard deviation of the true composition.  

     Ongoing Work: The similar results of all PLS-

based methods and some ANN methods, as well as the 

change in PLS2 accuracy for unusual samples depend-

ing on the training set, suggests that the algorithm and 

pre-processing steps used for quantitative LIBS 

 
Figure 2: RMSE values for each combination of meth-

od and preprocessing steps for each major element. 

  
Figure 3: The maximum (red), minimum (green) and median 

(blue) possible calculated SiO2 weight % converge with an 

increasing number of analyzed spots on a gabbro. Faint 

colored lines trace the standard deviations of the predictions. 

The black line is the true composition. 

 

have less influence on the accuracy of predictions than 

the selection of a suitable training set. We are currently 

investigating methods for improving the performance 

of PLS2 for quantitative LIBS by selecting training 

samples that are geochemically similar to the unknown 

sample being analyzed.  
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